Developing tissues contain motile populations of cells that can selforganize into spatially ordered tissues based on differences in their interfacial surface energies. However, it is unclear how self-organization by this mechanism remains robust when interfacial energies become heterogeneous in either time or space. The ducts and acini of the human mammary gland are prototypical heterogeneous and dynamic tissues comprising two concentrically arranged cell types. To investigate the consequences of cellular heterogeneity and plasticity on cell positioning in the mammary gland, we reconstituted its selforganization from aggregates of primary cells in vitro. We find that self-organization is dominated by the interfacial energy of the tissue-ECM boundary, rather than by differential homo-and heterotypic energies of cell-cell interaction. Surprisingly, interactions with the tissue-ECM boundary are binary, in that only one cell type interacts appreciably with the boundary. Using mathematical modeling and cell-type-specific knockdown of key regulators of cell-cell cohesion, we show that this strategy of self-organization is robust to severe perturbations affecting cell-cell contact formation. We also find that this mechanism of self-organization is conserved in the human prostate. Therefore, a binary interfacial interaction with the tissue boundary provides a flexible and generalizable strategy for forming and maintaining the structure of two-component tissues that exhibit abundant heterogeneity and plasticity. Our model also predicts that mutations affecting binary cell-ECM interactions are catastrophic and could contribute to loss of tissue architecture in diseases such as breast cancer.heterogeneity | cell sorting | differential adhesion | mammary | prostate S elf-organization is a process that contributes to pattern formation and repair at all scales of biological complexity. At the tissue scale, defining robust strategies of self-organization is critical for engineering functional tissues, as well as for understanding development and the breakdown of tissue structure during diseases such as cancer (1). During development, two or more populations of motile cells can self-organize into spatially ordered tissues by a process referred to as cell sorting (2-4). The outcome of cell sorting can be rationalized using physical models that invoke cell-type-specific differences in interfacial energies. Interfacial energies arise through the action of a contractile cell cortex coupled to adhesion molecules (e.g., cadherins) that link the cortices of neighboring cells and signal to modulate cortical tension at specific cellular interfaces (5). In general, the organization of a tissue after cell sorting corresponds to a configuration that maximizes the formation of the most energetically favorable (hereafter referred to as most cell-cell cohesive) â cellular interfaces (6). For example, with an intermediate level of heterotypic cell-cell cohesion the most self-cohesive cell type is typically found in the tissue core, with the le...