Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The paper aims to study the stress-strain state of the surface layer in a VT95 aluminum alloy part during its shot-impact treatment in the sequence of “shot-impact treatment–flap-wheel trimming” operations. The research objects included large parts, such as panels and cladding of complex shapes used in aircraft, missile, and shipbuilding industries. Computer simulation in the Ansys Workbench 19.0 software package was used to develop a methodology for determining residual stresses. As a result of simulating the studied treatment sequence, a visual representation of the residual stress formation pattern, as well as physical values and distribution curves of residual stresses, were obtained. The distribution pattern of residual stresses after performing two types of treatment was established to be similar. The maximum value of residual stresses, obtained as a result of performing a shot-impact treatment of the part surface with a shot of 3.0 mm in diameter at a shot-impact rate of 25 m/s, reaches about 600 MPa at a depth of 1.0 mm. Following the shot-impact treatment, flap-wheel trimming is performed in the finite element simulation as a set of abrasive grains at a rate of 18.316 m/s. The removal of the 25-, 50-, and 75-μm layer from the surface of the plate during trimming contributes to the shearing of the upper part in the residual stress diagram and, as a result, to a decrease in the values of residual stresses in the shot-impact treatment–flap-wheel trimming sequence to 400 MPa. In addition, along with an increase in the thickness of the layer removed from the surface during trimming, the value of residual stresses decreases more slowly. In this case, the thickness of the removed layer causes no effect on the depth of residual compression stresses (about 0.7 mm). The developed finite element model makes it possible to predict and control the level and magnitude of residual stresses in an aluminum alloy sample at the stage of its preparation for both a shot-impact treatment operation and the combination of shotimpact treatment and flap-wheel trimming.
The paper aims to study the stress-strain state of the surface layer in a VT95 aluminum alloy part during its shot-impact treatment in the sequence of “shot-impact treatment–flap-wheel trimming” operations. The research objects included large parts, such as panels and cladding of complex shapes used in aircraft, missile, and shipbuilding industries. Computer simulation in the Ansys Workbench 19.0 software package was used to develop a methodology for determining residual stresses. As a result of simulating the studied treatment sequence, a visual representation of the residual stress formation pattern, as well as physical values and distribution curves of residual stresses, were obtained. The distribution pattern of residual stresses after performing two types of treatment was established to be similar. The maximum value of residual stresses, obtained as a result of performing a shot-impact treatment of the part surface with a shot of 3.0 mm in diameter at a shot-impact rate of 25 m/s, reaches about 600 MPa at a depth of 1.0 mm. Following the shot-impact treatment, flap-wheel trimming is performed in the finite element simulation as a set of abrasive grains at a rate of 18.316 m/s. The removal of the 25-, 50-, and 75-μm layer from the surface of the plate during trimming contributes to the shearing of the upper part in the residual stress diagram and, as a result, to a decrease in the values of residual stresses in the shot-impact treatment–flap-wheel trimming sequence to 400 MPa. In addition, along with an increase in the thickness of the layer removed from the surface during trimming, the value of residual stresses decreases more slowly. In this case, the thickness of the removed layer causes no effect on the depth of residual compression stresses (about 0.7 mm). The developed finite element model makes it possible to predict and control the level and magnitude of residual stresses in an aluminum alloy sample at the stage of its preparation for both a shot-impact treatment operation and the combination of shotimpact treatment and flap-wheel trimming.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.