The liner of a CNG pressure vessel is manufactured by a DDI (deep drawing and ironing) process for the cylinder part, which is a continuous process that includes a drawing process to reduce the diameter of the billet and a subsequent ironing process to reduce the thickness of the billet. A tractrix die used in the 1st deep drawing allows the blank to flow smoothly by decreasing the punch load and radial tensile stress occurring in the workpiece. It also increases the draw ratio compared to conventional dies, but it causes forming defects. In this study, a shape coefficient (Sc) is proposed for the tractrix die using the blank diameter (D0), inflow diameter of the workpiece (di), and inflow angle of the workpiece ($$\theta$$
θ
) for design of the tractrix die. The effects of the thickness and inflow angle of the workpiece on wrinkling and folding were investigated through FEA. Also, a discriminant is proposed for the relative radial stress ($$\tilde{\sigma }$$
σ
~
) generated during the deep drawing process using the tractirx die and used to predict fracture. Based on the results, the blank thickness, the draw ratio, and the inflow of the workpiece angle in the 1st deep drawing process are suggested, and the number of operations in the DDI process was reduced from 6 to 4. This improves the productivity and reduces the manufacturing cost.