Next-generation sequencing now enables the rapid and affordable production of reliable biological data at multiple molecular levels, collectively referred to as "omics". To maximize the potential for discovery, computational biologists have created and adapted integrative multiomic analytical methods. When applied to diseases with traceable pathophysiology such as cancer, these new algorithms and statistical approaches have enabled the discovery of clinically relevant molecular mechanisms and biomarkers. In contrast, these methods have been much less applied to the field of molecular psychiatry, although diagnostic and prognostic biomarkers are similarly needed. In the present review, we first briefly summarize main findings from two decades of studies that investigated single molecular processes in relation to mood disorders. Then, we conduct a systematic review of multi-omic strategies that have been proposed and used more recently. We also list databases and types of data available to researchers for future work. Finally, we present the newest methodologies that have been employed for multi-omics integration in other medical fields, and discuss their potential for molecular psychiatry studies.