Spray drying is a well-known method of particle production which comprises the transformation of a fluid material into dried particles, taking advantage of a gaseous hot drying medium, with clear advantages for the fabrication of medical devices. In fact, it is quite common the production of microspheres and microcapsules designed for drug delivery systems. This review describes the different stages of the mechanism of the spray-drying process: atomization, droplet-to-particle conversion and particle collection. In particular, this work addresses the diversity of available atomizers, the drying kinetics and the importance of the configuration of the drying chamber, and the efficiency of the collection devices. The final properties of the dried products are influenced by a variety of factors, namely the spray dryer design, the feed characteristics and the processing parameters. The impact of those variables in optimizing both the spray-drying process and the synthesis of dried particles with desirable characteristics is discussed. The scalability of this manufacturing process in obtaining dried particles in submicron-to-micron scale favors a variety of applications within the food, chemical, polymeric, pharmaceutical, biotechnology and medical industries.