A new design method is proposed for the power or shaped beam pattern synthesis problem of narrowband conformal arrays, where only the magnitude response is specified. The proposed method iteratively linearizes the non-convex power pattern function to obtain a convex subproblem in the design variables, which can be solved optimally using second-order cone programming (SOCP). In addition, a wide variety of magnitude constraints such as non-convex lower bound magnitude constraints can be incorporated. An efficient technique for determining a reasonably good initial guess to the problem is also proposed to further improve the reliability of the method. Computer simulations show that the initial guesses so obtained converge to satisfactory solutions while satisfying various prescribed magnitude constraints. Design results show that the performance of the proposed method is comparable to the optimal solution previously obtained for uniform linear arrays with isotropic elements. Moreover, we show by means of examples that the proposed method is also applicable to general non-convex power pattern synthesis problems involving arbitrary array geometries, arbitrary polarization characteristics and mutual coupling effect. Index Terms-Conformal antenna arrays, mutual coupling, narrowband design, polarization, power pattern synthesis, second-order cone programming, shaped beam pattern synthesis.