The development of innovative approaches to deliver medications has been growing now for the last few decades and generates a growing interest in the dermatopharmaceutical field. Transdermal drug delivery in particular, remains an attractive alternative route for many therapeutics. However, due to the limitations posed by the barrier properties of the stratum corneum, the delivery of many pharmaceutical dosage forms remains a challenge. Most successful therapies using the transdermal route have been ones containing smaller lipophilic molecules with molecular weights of a few hundred Daltons. To overcome these limitations of size and lipophilicity of the drugs, transferosomes have emerged as a successful tool for transdermal delivery of a variety of therapeutics including hydrophilic actives, larger molecules, peptides, proteins, and nucleic acids. Transferosomes exhibit a flexible structure and higher surface hydrophilicity which both play a critical role in the transport of drugs and other solutes using hydration gradients as a driving force to deliver the molecules into and across the skin. This results in enhanced overall permeation as well as controlled release of the drug in the skin layers. Additionally, the physical–chemical properties of the transferosomes provide increased stability by preventing degradation of the actives by oxidation, light, and temperature. Here, we present the history of transferosomes from solid lipid nanoparticles and liposomes, their physical–chemical properties, dermal kinetics, and their recent advances as marketed dosage forms.This article is categorized under:
Biology‐Inspired Nanomaterials > Lipid‐Based Structures
Therapeutic Approaches and Drug Discovery > Emerging Technologies