This paper presents a modified Precise Integration Method (PIM) for long-time duration dynamic analysis. The fundamental solution and loading operator matrices in the first time substep are numerically computed employing a known unconditionally stable method (referred to as original method in this paper). By using efficient recursive algorithms to evaluate these matrices in the first time-step, the same numerical results as those using the original method with small time-step are obtained. The proposed method avoids the need of matrix inversion and numerical quadrature formulae, while the particular solution obtained has the same accuracy as that of the homogeneous solution. Through setting a proper value of the time substep, satisfactory accuracy and numerical dissipation can be achieved.