Cancer remains a predominant global health concern, necessitating effective treatment options. Conventional cancer therapies, particularly chemotherapy, often face constraints such as low selectivity, insufficient solubility, and multidrug resistance (MDR), which diminish effectiveness and exacerbate negative effects. Metal oxide nanoparticles (MONPs), such as iron oxide, zinc oxide, and copper oxide, offer a promising solution by enhancing targeted drug delivery, reducing systemic toxicity, and mitigating chemotherapy-induced disabilities like neurotoxicity and cardiotoxicity. Nanocarriers conjugated with drugs can improve drug delivery within the body and enhance their circulation in the bloodstream. Recent advancements in MONP synthesis and functionalization have further improved their stability and drug-loading capacity, making them a valuable tool in cancer treatment. MONPs have distinctive physicochemical characteristics, enabling better imaging, drug encapsulation, and targeted medication delivery to cancerous cells. These nanocarriers enhance treatment effectiveness through focused and controlled drug release, reducing off-target effects and addressing drug resistance. This review aims to explore the potential of MONPs as efficient nanocarriers for anticancer drugs, addressing limitations of traditional chemotherapy such as poor specificity, systemic toxicity, and drug resistance. Additionally, the review discusses recent advancements in MONP synthesis and functionalization, which enhance their stability, drug-loading capacity, and compatibility.