Abstract. The purpose of the research was to prepare and evaluate a topical nanolipidgel (NLH) of terbinafine hydrochloride (TRB), an antimycotic agent, for enhanced skin deposition and improved antifungal activity. Topical solid lipid nanoparticles (SLN) based nanolipidgel was formulated and evaluated. TRB-loaded SLNs were formulated by high-pressure homogenization technique. The stable TRB SLN dispersion was incorporated into a gel using 1% Carbopol 980 NF. Rheological evaluation and texture analysis of the TRB NLH was carried out. Skin permeation, skin deposition, antifungal activity, and occlusivity studies of the nanolipidgel formulation were carried out. The safety of the TRB NLH gel was evaluated using acute skin irritation test on New Zealand White rabbits. The SLN dispersion containing 10% of glyceryl monostearate, 3% of Tween 80, and 1% Plurol Oleique was the most stable. The optimized TRB SLN had a particle size and zeta potential value of 148.6 ± 0.305 nm and −20.4 ±1.2 mV, respectively. TRB NLH had excellent rheological and texture properties to facilitate its topical application. TRB NLH showed increased skin deposition of the drug over plain (3-fold) and marketed TRB formulation (2-fold). TRB NLH had significantly enhanced antifungal activity against Candida albicans. TRB NLH showed efficient occlusivity and was non-irritant to the rabbit skin with no signs of erythema or edema. Solid lipid nanoparticles-based topical nanolipidgel of terbinafine can be an efficient, industrially scalable, and cost-effective alternative to the existing conventional formulations.KEY WORDS: in vitro antifungal activity; rheological analysis of gel; solid lipid nanoparticles; terbinafine; texture analysis of gel.