Arginine methylation is a prevalent post‐translational modification in eukaryotic cells. Two significant debates exist within the field: do these enzymes dimethylate their substrates in a processive or distributive manner, and do these enzymes operate using a random or sequential method of bisubstrate binding? We revealed that human protein arginine N‐methyltransferase 1 (PRMT1) enzyme kinetics are dependent on substrate sequence. Further, peptides containing an Nη‐hydroxyarginine generally demonstrated substrate inhibition and had improved KM values, which evoked a possible role in inhibitor design. We also revealed that the perceived degree of enzyme processivity is a function of both cofactor and enzyme concentration, suggesting that previous conclusions about PRMT sequential methyl transfer mechanisms require reassessment. Finally, we demonstrated a sequential ordered Bi–Bi kinetic mechanism for PRMT1, based on steady‐state kinetic analysis. Together, our data indicate a PRMT1 mechanism of action and processivity that might also extend to other functionally and structurally conserved PRMTs.