In this paper, extensive real-data experiments for the investigation of the benefit of exploiting multiple aspects and multiple baselines for the reconstruction of urban surface models by synthetic aperture radar interferometry are documented. These experiments are carried out within a recently proposed reconstruction framework that allows the fusion of almost arbitrary configurations of multi-aspect multi-baseline InSAR data. The results based on airborne decimeter-resolution millimeterwave imagery prove and quantify that multiple baselines help to solve the phase ambiguity problem, while multiple aspects reduce the parts of the scene affected by radar shadowing. In addition, the inherent redundancy provides a significant improvement in the achievable reconstruction accuracy, which is evaluated relative to the reconstruction error common for conventional single-aspect single-baseline SAR interferometry.Index Terms-Maximum-likelihood estimation, multi-aspect, multi-baseline, synthetic aperture radar interferometry (InSAR), synthetic aperture radar (SAR), urban areas.