Chemical mutagenesis provides an inexpensive and straightforward way to generate a high density of novel nucleotide diversity in the genomes of plants and animals. Mutagenesis therefore can be used for functional genomic studies and also for plant breeding. The most commonly used chemical mutagen in plants is ethyl methanesulfonate (EMS). EMS has been shown to induce primarily single base point mutations. Hundreds to thousands of heritable mutations can be induced in a single plant line. A relatively small number of plants, therefore, are needed to produce populations harboring deleterious alleles in most genes. EMS mutagenized plant populations can be screened phenotypically (forward-genetics), or mutations in genes can be identified in advance of phenotypic characterization (reverse-genetics). Reverse-genetics using chemically induced mutations is known as Targeting Induced Local Lesions IN Genomes (TILLING). This unit gives information on EMS treatment of seed and vegetative propagules. C 2016 by John Wiley & Sons, Inc. Keywords: induced mutation r ethyl methanesulfonate r TILLING r point mutation r tissue culture r forward-genetics r reverse-genetics How to cite this article: Jankowicz-Cieslak, J. and Till, B.J. 2016. Chemical mutagenesis of seed and vegetatively propagated plants using EMS.