The receptors for insulin and insulin-like growth factor I (IGF-I) have in common a high sequence homology and diverse overlapping functions, (e.g., the stimulation of acute metabolic events and the induction of cell growth.). In the present study, we have compared the potential of insulin and IGF-I receptors in stimulating glucose transport activity, glucose transporter gene expression, DNA-synthesis, and expression of proto-oncogene c-fos in 3T3-L1 adipocytes which express high levels of both receptors. Binding of both hormones to their own receptors was highly specific as compared with binding to the respective other receptor (insulin receptor: KD = 3.6 nM, KI of IGF-I greater than 500 nM; IGF-I receptor, KD = 1.1 nM, KI of insulin = 191 nM). Induction of proto-oncogene c-fos mRNA by insulin and IGF-I paralleled their respective receptor occupancy and was thus induced by both hormones via their own receptor (EC50 of insulin, 3.7; IGF-I, 3.9 nM). Similarly, both insulin and IGF-I increased DNA synthesis (EC50 of insulin, 5.8 nM; IGF-I, 4.0 nM), glucose transport activity (EC50 of insulin, 1.7 nM; IGF-I, 1.4 nM), and glucose transporter (GLUT4) mRNA levels in concentrations corresponding with their respective receptor occupancy. These data indicate that in 3T3-L1 cells the alpha-subunits of insulin and IGF-I receptors have an equal potential to stimulate a metabolic and a mitogenic response.