Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The quantitative characterization of rock mass and stress changes induced by mining activities is crucial for structural stability monitoring and disaster early warning. This paper investigates the time–space–intensity distribution of microseismic sources during the pillar-free large-area continuous extraction. Furthermore, it explores a method involving collaborative evolution patterns of the velocity field and spatial b-value to identify stress and structural changes at the panel stope. Results show that anomalous zones in wave velocities and b-values form at the intersections of extraction drifts, strike drifts, cross drifts, and connection roadways influenced by mining activities, as well as in footwall ore-rock contacts, often accompanied by the nucleation of microseismic events. The synergistic use of wave velocity fields and spatial b-value models reveals the relationship between stress migration behavior and stope structure changes due to mining disturbances. The velocity field primarily reflects macroscopic changes in the structure and stress distribution, while spatial b-values further explain stress gradients in specific areas. Additionally, we have advanced the identification of an instability disaster at the connection roadway and cross drift intersection based on increases in wave velocity and abnormal changes in b-value. This paper demonstrates the potential of risk identification using the proposed method, providing insights into predicting geotechnical engineering disasters in complex stress environments.
The quantitative characterization of rock mass and stress changes induced by mining activities is crucial for structural stability monitoring and disaster early warning. This paper investigates the time–space–intensity distribution of microseismic sources during the pillar-free large-area continuous extraction. Furthermore, it explores a method involving collaborative evolution patterns of the velocity field and spatial b-value to identify stress and structural changes at the panel stope. Results show that anomalous zones in wave velocities and b-values form at the intersections of extraction drifts, strike drifts, cross drifts, and connection roadways influenced by mining activities, as well as in footwall ore-rock contacts, often accompanied by the nucleation of microseismic events. The synergistic use of wave velocity fields and spatial b-value models reveals the relationship between stress migration behavior and stope structure changes due to mining disturbances. The velocity field primarily reflects macroscopic changes in the structure and stress distribution, while spatial b-values further explain stress gradients in specific areas. Additionally, we have advanced the identification of an instability disaster at the connection roadway and cross drift intersection based on increases in wave velocity and abnormal changes in b-value. This paper demonstrates the potential of risk identification using the proposed method, providing insights into predicting geotechnical engineering disasters in complex stress environments.
Assessment of the current state of the near-surface part of the geological environment and understanding of its layered structure play an important role in various scientific and applied fields. The presented work is devoted to the application of phasometric modifications of geoelectric control methods to solve the problem of the detailed complex study of the underground layers of the environment in the process of drilling operations with the use of special equipment. These studies are based on the analysis of variations in phase parameters and characteristics of an artificially excited multiphase electric field to assess poorly distinguishable details and changes in the layered structure of the medium. The proposed method has increased accuracy, sensitivity and noise proofness of measurements, which allows for extracting detailed information about the heterogeneity, composition and stratification of underground geological formations not only in the zone where the drill makes contact with the medium, but also in the entire control zone. This paper considers practical mathematical models of phase images for basic scenarios of drill penetration between the layers of the near-surface part of the geological medium with different characteristics, obtained by means of approximation apparatus based on continuous piecewise linear functions, and also suggests the use of modern machine learning methods for intelligent analysis of its structure. Studying the phase shifts in electrical signals during drilling highlights their value for understanding the dynamics of soil response to the process. The observed signal changes during the drilling cycle reveal in detail the heterogeneity in soil structure and its response to changes caused by drilling. The stability of phase shifts at the last stages of the process indicates a quasi-equilibrium state. The results make a significant contribution to geotechnical science by offering an improved approach to monitoring a layered structure without the need for deep drilling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.