High-resolution and multiplexed imaging techniques are giving us an increasingly detailed observation of a biological system. However, sharing, exploring, and customizing the visualization of large multidimensional images can be a challenge. Here, we introduce Samui, a performant and interactive image visualization tool that runs completely in the web browser. Samui is specifically designed for fast image visualization and annotation and enables users to browse through large images and their selected features within seconds of receiving a link. We demonstrate the broad utility of Samui with images generated with two platforms: Vizgen MERFISH and 10x Genomics Visium Spatial Gene Expression. Samui along with example datasets is available at https://samuibrowser.com.
Impact StatementHigh-resolution and multiplexed imaging techniques are giving us an increasingly detailed observation of a biological system. However, sharing, exploring, and customizing the visualization of large multidimensional images without a graphical user interface, is a major challenge. Here, we introduce Samui Browser, a performant and interactive image visualization tool that runs completely in a web browser. To the best of our knowledge, we are the first to propose a web-based solution to share, explore, and annotate large multidimensional images. This is a significant advance as there are no other web-based visualization tools that can share large images. This statement spans commercial and noncommercial platforms. Examples of how someone might use the Samui Browser are to share the images with collaborators who want to visualize the spatial location of gene expression or proteins from multiplex images. Samui Browser can also be used to generate publicly available data resources for publication to make datasets easily accessible to the broader scientific community.
BackgroundRecent technological advances have led to the generation of increasingly large and multi-dimensional images that can be used for spatially resolved transcriptomics (SRT) (1) . This enables researchers to map transcriptome-wide gene expression data to spatial coordinates within intact tissue at near-or subcellular