Gravitational lithosphere removal in continental interior has been inferred from various observations, including anomalous surface deflections and magmatism. We use numerical models and a simplified theoretical analysis to investigate how lithosphere removal can be recognized in the magmatic record. One style of removal is a Rayleigh‐Taylor‐type instability, where removal occurs through dripping. The associated magmatism depends on the lithosphere thermal structure. Four types of magmatism are predicted: (1) For relatively hot lithosphere (e.g., back arcs), the lithosphere can be conductively heated and melted during removal, while the asthenosphere upwells and undergoes decompression melting. If removal causes significant lithospheric thinning, the deep crust may be heated and melted. (2) For moderately warm lithosphere (e.g., average Phanerozoic lithosphere) in which the lithosphere root has a low density, only the lithosphere may melt. (3) If the lithosphere root has a high density in moderately warm lithosphere, only asthenosphere melt is predicted. (4) For cold lithosphere (e.g., cratons), no magmatism is induced. An alternate style of removal is delamination, where dense lithosphere peels along Moho. In most cases, the lithosphere sinks too rapidly to melt. However, asthenosphere can upwell to the base of the crust, resulting in asthenospheric and crustal melts. In delamination, magmatism migrates laterally with the detachment point; in contrast, magmatism in Rayleigh‐Taylor‐type instability has a symmetric shape and converges toward the drip center. The models may explain the diversity of magmatism observed in areas with inferred lithosphere removal, including the Puna Plateau and the southern Sierra Nevada.