“…SUEM experiences the same charging issue as the normal SEM, so in principle is not suitable to study electrically insulating materials, although the environmentalmode SUEM [29] can be a potential solution. SUEM has been utilized to image ultrafast photocarrier dynamics on the surface of a wide range of materials, including crystalline semiconductors [28,30], semiconducting nanowires [31] and nanocrystals [32], amorphous semiconductors [33], semiconductor p-n junctions [34] and two-dimensional materials [35], and these applications have resulted in intriguing observations such as ballistic transport of photocarriers across a p-n junction [34], superdiffusion of photocarriers in heavily-doped semiconductors [30] and spontaneous spatial separation of electrons and holes in amorphous semiconductors [33]. Whereas there has been an abundance of recent reviews of ultrafast electron microscopy [8,9,[36][37][38], we dedicate this article specifically to SUEM, with an emphasis on the current understanding of various physical processes that contribute to the contrast images observed in SUEM from a users' perspective.…”