The coati optimization algorithm (COA) is a meta-heuristic optimization algorithm proposed in 2022. It creates mathematical models according to the habits and social behaviors of coatis: (1) In the group organization of the coatis, half of the coatis climb trees to chase their prey away, while the other half waits beneath to catch it; (2) Coatis avoidance predators behavior. Which gives the algorithm strong global exploration ability. However, over the course of our experiment, we uncovered opportunities for enhancing the algorithm's performance. When confronted with intricate optimization problems, certain limitations surfaced. Much like a long-nosed raccoon gradually narrowing its search range as it approaches the optimal solution, COA algorithm exhibited tendencies that could result in reduced convergence speed and the risk of becoming trapped in local optima. In this paper, we propose an improved coatis optimization algorithm (ICOA) to enhance the algorithm's efficiency. Through a sound-based search envelopment strategy, coatis can capture prey more quickly and accurately, allowing the algorithm to converge more rapidly. By employing a physical exertion strategy, coatis can have a greater variety of escape options when being chased, thereby enhancing the algorithm's exploratory capabilities and the ability to escape local optima. Finally, the lens opposition-based learning strategy is added to improve the algorithm's global performance. To validate the performance of the ICOA, we conducted tests using the IEEE CEC2014 and IEEE CEC2017 benchmark functions, as well as six engineering problems.