The present work describes the geometry and electronic structures of liquid crystals of azoxybenzene group and their reactivity with respect to molecular properties: total energy, ionization potential, electron affinity, HOMO energy, LUMO energy, electronegativity, hardness and dipole moment. Literature shows that mesomorphism depends particularly on the nature of terminal groups and their linkages with parent molecule. And thus, substitution of terminal groups can help to fine tune the liquid crystal behavior and also their applications. In this work the effect of four terminal groups of same and diverse nature has been studied. For the study, the molecular modeling and geometry optimization of the compounds have been performed on workspace program of CAChe Pro 5.04 software of Fujitsu using DFT method.