1981
DOI: 10.1007/bfb0090416
|View full text |Cite
|
Sign up to set email alerts
|

Fourier analysis on semisimple symmetric spaces

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
1
0
1

Year Published

1984
1984
2005
2005

Publication Types

Select...
4
3

Relationship

0
7

Authors

Journals

citations
Cited by 10 publications
(2 citation statements)
references
References 8 publications
0
1
0
1
Order By: Relevance
“…Definition 1. On dit que ξ e (a q ) J est un exposant de / le long du sous-groupe parabolique P si la fonction (k, X) H-» Σ € ξ, m ( p l W /) xm n ' est P as identiquement nulle sur Brought to you by | University of Arizona Authenticated Download Date | 6/9/15 1:03 PM K* a r On appelle exposant directeur de / le long de P tout exposant de / le long de P qui est maximal pour l'ordre = defini en (16).…”
Section: Developpements Asymptotiques Et Developpements Convergentsunclassified
“…Definition 1. On dit que ξ e (a q ) J est un exposant de / le long du sous-groupe parabolique P si la fonction (k, X) H-» Σ € ξ, m ( p l W /) xm n ' est P as identiquement nulle sur Brought to you by | University of Arizona Authenticated Download Date | 6/9/15 1:03 PM K* a r On appelle exposant directeur de / le long de P tout exposant de / le long de P qui est maximal pour l'ordre = defini en (16).…”
Section: Developpements Asymptotiques Et Developpements Convergentsunclassified
“…Recently, considerable effort has gone into trying to understand semisimple symmetric spaces, where G is assumed semisimple. See Flensted-Jensen [2] and Oshima [9] for expositions of the current state of knowledge, which is very incomplete. The semisimple symmetric spaces possess the additional structure of an invariant semi-Riemannian metric (it is the geodesic symmetries with repect to this metric that explain the nomenclature "symmetric").…”
Section: Introductionmentioning
confidence: 99%