The bioavailability of heavy metals in soil is controlled by their concentrations and soil properties. Diffuse reflectance mid-infrared Fourier-transform spectroscopy (DRIFTS) is capable of detecting specific organic and inorganic bonds in metal complexes and minerals and therefore, has been employed to predict soil composition and heavy metal contents. The present study explored the potential of DRIFTS for estimating soil heavy metal bioavailability. Soil and corresponding wheat grain samples from the Yangtze River Delta region were analyzed by DRIFTS and chemical methods. Statistical regression analyses were conducted to correlate the soil spectral information to the concentrations of Cd, Cr, Cu, Zn, Pb, Ni, Hg and Fe in wheat grains. The principal components in the spectra influencing soil heavy metal bioavailability were identified and used in prediction model construction. The established soil DRIFTS-based prediction models were applied to estimate the heavy metal concentrations in wheat grains in the mid-Yangtze River Delta area. The predicted heavy metal concentrations of wheat grain were highly consistent with the measured levels by chemical analysis, showing a significant correlation (r2 > 0.72) with acceptable root mean square error RMSE. In conclusion, DRIFTS is a promising technique for assessing the bioavailability of soil heavy metals and related ecological risk.