Background and Objective
Colorectal cancer (CRC), a leading global malignancy, continues to challenge the medical community. Despite advancements in surgical, chemotherapeutic, radiation, targeted, and immunotherapeutic strategies, issues like resistance and side effects persist. This review illuminates the potential of ferroptosis, an emerging non-apoptotic cell death form, and graphene oxide (GO), with its distinctive physicochemical properties, in CRC therapy.
Methods
The databases search included PubMed, Medline and Web of Science. Search terms focused on CRC, graphene, GO, ferroptosis, and related aspects in therapy and drug delivery. The time frame for literature retrieval was up to April 2024. Studies in languages other than English were excluded.
Key Content and Findings
Ferroptosis has been recognized for its role in addressing treatment resistance, a notable hurdle in effective CRC management. This form of cell death offers a promising avenue for enhancing the effectiveness of existing treatments. However, understanding its mechanisms and clinical implications in CRC remains an area of active research, with significant progress required for its practical application. Simultaneously, GO, a versatile two-dimensional material, has demonstrated substantial potential in biomedical applications, especially in cancer therapy. Its high specific surface area and unique π-electron domains facilitate the effective binding of chemotherapy drugs, target genes, and photosensitizers. This makes GO a promising candidate in cancer diagnosis and treatment, particularly through tumor photothermal and photodynamic therapy (PDT). Despite these advancements, GO’s clinical application faces challenges, including
in vitro
cytotoxicity and decreased biodegradability, necessitating further research.
Conclusions
This review focuses on the characteristics of GO and ferroptosis, as well as their applications in tumor diagnosis and treatment, with a particular emphasis on their potential in CRC.