Cardiometabolic disease, emerging as a worldwide epidemic, is a combination of metabolic derangements leading to type 2 diabetes and cardiovascular disease. Genetic and environmental factors are linked through epigenetic mechanisms to the pathogenesis of cardiometabolic disease. Post-translational modifications of histone tails, including acetylation and deacetylation, epigenetically alter chromatin structure and dictate cell-specific gene expression patterns. The histone deacetylase (HDAC) family is comprised of 18 members that regulate gene expression by altering the acetylation status of nucleosomal histones and by functioning as nuclear transcriptional co-repressors. HDACs regulate key aspects of metabolism, inflammation, and vascular function pertinent to cardiometabolic disease in a cell- and tissue-specific manner. HDACs also likely play a role in the “metabolic memory” of diabetes, an important clinical aspect of the disease. Understanding the molecular, cellular, and physiological functions of HDACs in cardiometabolic disease is expected to provide insight into disease pathogenesis, risk factor control, and therapeutic development.