We study the design problem for the optimal classification of functional data. The goal is to select sampling time points so that functional data observed at these time points can be classified accurately. We propose optimal designs that are applicable to either dense or sparse functional data. Using linear discriminant analysis, we formulate our design objectives as explicit functions of the sampling points. We study the theoretical properties of the proposed design objectives and provide a practical implementation. The performance of the proposed design is evaluated through simulations and real data applications. The Canadian Journal of Statistics 48: 285–307; 2020 © 2019 Statistical Society of Canada