Ayaka YAMAMOTO†a) , Nonmember, Yoshio IWAI †b) , and Hiroshi ISHIGURO †c) , Members
SUMMARYBackground subtraction is widely used in detecting moving objects; however, changing illumination conditions, color similarity, and real-time performance remain important problems. In this paper, we introduce a sequential method for adaptively estimating background components using Kalman filters, and a novel method for detecting objects using margined sign correlation (MSC). By applying MSC to our adaptive background model, the proposed system can perform object detection robustly and accurately. The proposed method is suitable for implementation on a graphics processing unit (GPU) and as such, the system realizes real-time performance efficiently. Experimental results demonstrate the performance of the proposed system.