Objectives: This study objective is to create a proactive forensic framework with a classification model to identify the malicious content to avoid cyber-attacks. Methods: In this proposed work, a novel framework is introduced to analyze and detect network attacks before it happens. It monitors the network packet flow, captures the packets, analyzes the packet flow proactively, and detects cyber-attacks using different machine learning algorithms and Deep Convolution Neural network (CNN) technique. The KDD dataset is used in this experiment with 30% for testing and 80% for training. Findings: The simulation results show that the detection percentage of the proposed framework reaches a maximum of 95.92% in different scenarios. It is approximately 10% higher than the existing proactive frameworks for example Gawand’s model, Ahmetoglu’s model and many more. Novelty and applications: The proposed framework is a proactive model which detects the cyber-attack in prior to avoid cyber-attacks. The deep CNN model highly efficient for detecting cyber-attack. Keywords: Proactive Forensic Framework, Deep CNN, Classification Algorithms, Cyber attack detection, Intrusion Detection System