Photogrammetry depends critically on the quality of the images used to reconstruct accurate and detailed 3D models. Selection of high-quality images not only improves the accuracy and resolution of the resulting 3D models, but also contributes to the efficiency of the photogrammetric process by reducing data redundancy and computational demands. This study presents a novel approach to image quality evaluation tailored for photogrammetric applications that uses the key point descriptors typically encountered in image matching. Using a LightGBM ranker model, this research evaluates the effectiveness of key point descriptors such as SIFT, SURF, BRISK, ORB, KAZE, FREAK, and SuperPoint in predicting image quality. These descriptors are evaluated for their ability to indicate image quality based on the image patterns they capture. Experiments conducted on various publicly available image datasets show that descriptor-based methods outperform traditional no-reference image quality metrics such as BRISQUE, NIQE, PIQE, and BIQAA and a simple sharpness-based image quality evaluation method. The experimental results highlight the potential of using key-point-descriptor-based image quality evaluation methods to improve the photogrammetric workflow by selecting high-quality images for 3D modeling.