The recognition of human faces poses a complex challenge within the domains of computer vision and artificial intelligence. Emotions play a pivotal role in human interaction, serving as a primary means of communication. This manuscript aims to develop a robust recommendation system capable of identifying individual faces from rasterized images, encompassing features such as eyes, nose, cheeks, lips, forehead, and chin. Human faces exhibit a wide array of emotions, with some emotions, including anger, sadness, happiness, surprise, fear, disgust, and neutrality, being universally recognizable. To achieve this objective, deep learning techniques are leveraged to detect objects containing human faces. Every human face exhibits common characteristics known as Haar features, which are employed to extract feature values from images containing multiple elements. The process is executed through three distinct stages, starting with the initial image and involving calculations. Real-time images from popular social media platforms like Facebook are employed as the dataset for this endeavor. The utilization of deep learning techniques offers superior results, owing to their computational demands and intricate design when compared to classical computer vision methods using OpenCV. The implementation of deep learning is carried out using PyTorch, further enhancing the precision and efficiency of face recognition.