2012
DOI: 10.1016/j.powtec.2012.04.041
|View full text |Cite
|
Sign up to set email alerts
|

Fractal analysis as a complimentary technique for characterizing nanoparticle size distributions

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
15
0
3

Year Published

2013
2013
2024
2024

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 38 publications
(18 citation statements)
references
References 22 publications
0
15
0
3
Order By: Relevance
“…The concept of fractal dimension has been frequently used to characterize the morphological features of agglomerates formed by fine cohesive particles (Froeschke et al, 2003;Kanniah et al, 2012). For fractal agglomerates, there is a power law between the number of primary particles within an agglomerate and its size, represented by the radius of gyration (Meakin, 1987):…”
Section: Determination Of Fractal Dimension Of Individual Agglomeratementioning
confidence: 99%
See 1 more Smart Citation
“…The concept of fractal dimension has been frequently used to characterize the morphological features of agglomerates formed by fine cohesive particles (Froeschke et al, 2003;Kanniah et al, 2012). For fractal agglomerates, there is a power law between the number of primary particles within an agglomerate and its size, represented by the radius of gyration (Meakin, 1987):…”
Section: Determination Of Fractal Dimension Of Individual Agglomeratementioning
confidence: 99%
“…An important point to note is that the agglomerate models used in previous research are characterized by generally round, regular shape and compact structure, perhaps stemming from particular interest in the granulation process (Kafui and Thornton, 2000;Liu et al, 2010;Reynolds et al, 2005). However, some other applications such as mixing and fluidization of nanoparticles (Chen et al, 2008;Deng et al, 2013;Scicolone et al, 2011) and dry coating (Pfeffer et al, 2001;Yang et al, 2005) require handling and processing the agglomerates formed by dry fine particles, characterized by irregular shapes and more open structures (Froeschke et al, 2003;Kanniah et al, 2012). Therefore, the crucial missing information is the detailed understanding of how the morphological features of agglomerates impact their breakage behavior.…”
Section: Introductionmentioning
confidence: 99%
“…Fractal dimension of particle size distribution was used to characterize the surface roughness of solid particles of all the constituents. The results indicated [27] that self-similarity (fractal structure) was shown in the particle size distribution. The fractal dimension is the quantitative parameter used to describe fractal characteristics because it is related to the property parameters of materials [28].…”
Section: Fractal Dimension Of Particle Size Distributionmentioning
confidence: 84%
“…The validities of these two approaches were also reported in previous studies. [ 19,25,28 ] The 2D fractal dimension Df2D obtained by image analysis cannot be directly used as a parameter for the 3D structures but should be converted to the value in the 3D model Df3D. Here, this is performed using an empirical correlation of Equation ) derived by Lee and Kramer [ 26 ] : Df3D=1.628Df2D+4.6 …”
Section: Resultsmentioning
confidence: 99%