“…Proof for (a) Recall the notation (11), (7). By Lemma 6.1, for all h > 0, y > g(h), g h y (t)/ log(t) ≥ (1 − A −1 )g(t)/ log(t) > 1 as t → ∞, so by (60), Lemma 4.10, and Lemma Now, lim t→∞ tΠ(g h y (t)/ log(t)) ≥ lim t→∞ tΠ((1 − 1/A)g(t)/ log(t)) = 0 by (2), uniformly in h > 0, y > g(h) by Lemma 6.1. Applying Lemma 5.1 with H(t) = t −2 , as g h y (t) ≥ (1 − 1/A)g(t), uniformly in h > 0, y > g(h), as t → ∞, (2A) P X 0, g h y (t) log(t)…”