A possibility was considered concerning estimation of grain anisomery in the structure of fuel cladding tubes of corrosion-resistant 026Cr16Ni15Mo3Nb steel of austenitic class rolled according to two flow charts: regular and intensive technologies using fractal formalism. Role of grain boundary hardening during cold plastic deformation was analyzed by studying the effect of the fractal dimension of grains D and their boundaries Dg on 0.2, w, and 5. The best correlation among those that were considered was observed between relative elongation and fractal dimensions of the grain structure (R2 = 0.90). The smallest correlation was observed with the yield stress (R2 = 0.64). It is because of variation of plastic flow processes towards a decrease in the degree of hardening in the material rolled according to the intensive technology. Cold deformation results in refining of the average grain size from 15.50 to 15.42 µm. In this case, extent of the grain boundary length L increased by 17.62% at an iteration step commensurate with the average grain size which is indicated by a change in the fractal dimension according to L ~ δ1-D. Degree of the grain structure inhomogeneity was estimated using ratios of self-similarity of regions of fractal dimensions of the structure. The obtained results on the level of mechanical properties of fuel cladding tubes made of austenitic steel indicate advantage of the intensive technology over regular one that was confirmed by results of fractal modeling.