“…Fractional differential equations (FDEs) are among the strongest tools of mathematical modeling and are successfully employed to model complex physical and biological phenomena like anomalous diffusion, viscoelastic behavior, power laws, and automatic remote control systems. In the available literature, notable definitions of fractional derivatives were given by famous mathematicians, but the most commonly used are the Riemann-Liouville (RL) and Caputo derivatives [1,2,21,22,24,26,29,39]. Thus FDEs involving the RL fractional derivative or Caputo derivative have considered frequently for investigating the existence of mild solutions.…”