Abstract:Let $s\in \mathbb{R}$ and $0<p\leqslant \infty$. The fractional Fock–Sobolev spaces $F_{\mathscr{R}}^{s,p}$ are introduced through the fractional radial derivatives $\mathscr{R}^{s/2}$. We describe explicitly the reproducing kernels for the fractional Fock–Sobolev spaces $F_{\mathscr{R}}^{s,2}$ and then get the pointwise size estimate of the reproducing kernels. By using the estimate, we prove that the fractional Fock–Sobolev spaces $F_{\mathscr{R}}^{s,p}$ are identified with the weighted Fock spaces $F_{s}… Show more
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.