Fractional Operators and Fractionally Integrated Random Fields on Z
Donatas Surgailis,
Vytautė Pilipauskaitė
Abstract:We consider fractional integral operators $(I-T)^d, d \in (-1,1)$ acting on functions $g: \mathbb{Z}^{\nu} \to \mathbb{R}, \nu \ge 1 $, where $T $ is the transition operator of a random walk on
$\mathbb{Z}^{\nu}$. We obtain sufficient and necessary conditions for the existence, invertibility and square summability of kernels $\tau (\mathbf{s}; d), \mathmb{s} \in \mathbb{Z}^{\nu}$ of $(I-T)^d $. Asymptotic behavior of $\tau (\mathbf{s}; d)$ as $|\mathbf{s}| \to \infty$ is identified following local limit th… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.