Voltage-lift is a widely used technique in DC–DC converters to step-up output voltage levels. Several traditional and advanced control techniques applicable to power electronic converters (PEC) have been reported and utilized for voltage-lift applications. Similarly, in recent years the implementation of fractional-order controllers (FOC) in PEC applications has gained interest, aiming to improve system performance, and has been validated in basic converter topologies. Following this trend, this work presents an FOC for a voltage-lift converter, requiring only output voltage feedback. A third-order non-minimal phase system is selected for experimentation to verify FOC implementations for more complex PEC configurations. A simple, straightforward design and approximation methodology for the FOC is proposed. Step-by-step development of the FOC, numerical and practical results on a 50 W voltage-lift converter are reported. The results show that PEC transient and steady-state responses can be enhanced using FOC controllers when compared with classical linear controllers. Extended applications of FOC for improved performance in power conversion is also discussed.