Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
We consider a fractional boundary value problem involving a fractional derivative with respect to a certain function . A HartmanWintner-type inequality is obtained for such problem. Next, several Lyapunov-type inequalities are deduced for different choices of the function . Moreover, some applications to eigenvalue problems are presented.
In this paper, we develop a fractional integro‐differential operator calculus for Clifford algebra‐valued functions. To do that, we introduce fractional analogues of the Teodorescu and Cauchy‐Bitsadze operators, and we investigate some of their mapping properties. As a main result, we prove a fractional Borel‐Pompeiu formula based on a fractional Stokes formula. This tool in hand allows us to present a Hodge‐type decomposition for the fractional Dirac operator. Our results exhibit an amazing duality relation between left and right operators and between Caputo and Riemann‐Liouville fractional derivatives. We round off this paper by presenting a direct application to the resolution of boundary value problems related to Laplace operators of fractional order.
In this paper we develop a time-fractional operator calculus in fractional Clifford analysis. Initially we study the Lp-integrability of the fundamental solutions of the multi-dimensional time-fractional diffusion operator and the associated time-fractional parabolic Dirac operator. Then we introduce the time-fractional analogues of the Teodorescu and Cauchy-Bitsadze operators in a cylindrical domain, and we investigate their main mapping properties. As a main result, we prove a time-fractional version of the Borel-Pompeiu formula based on a time-fractional Stokes' formula. This tool in hand allows us to present a Hodge-type decomposition for the forward time-fractional parabolic Dirac operator with left Caputo fractional derivative in the time coordinate. The obtained results exhibit an interesting duality relation between forward and backward parabolic Dirac operators and Caputo and Riemann-Liouville time-fractional derivatives. We round off this paper by giving a direct application of the obtained results for solving time-fractional boundary value problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
BlogTerms and ConditionsAPI TermsPrivacy PolicyContactCookie PreferencesDo Not Sell or Share My Personal Information
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.