2019
DOI: 10.20429/tag.2019.060202
|View full text |Cite
|
Sign up to set email alerts
|

Fractional strong matching preclusion for two variants of hypercubes

Abstract: Let F be a subset of edges and vertices of a graph G. If G − F has no fractional perfect matching, then F is a fractional strong matching preclusion set of G. The fractional strong matching preclusion number is the cardinality of a minimum fractional strong matching preclusion set. In this paper, we mainly study the fractional strong matching preclusion problem for two variants of hypercubes, the multiply twisted cube and the locally twisted cube, which are two of the most popular interconnection networks. In … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2021
2021
2021
2021

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 19 publications
0
0
0
Order By: Relevance