“…The applicability of such models to the description of different polymers is well known, for example, poly-isobutylene [4], polyurea and PET [6], shape memory polymers [7], amorphous polymers [8] and flax fiber-reinforced polymer [9]. Fractional viscoelastic models are also used for modeling laminated glass beams in the pre-crack state under explosive loads [10]; stress relaxation behavior of glassy polymers [11]; description of fiber-reinforced rubber concrete [12]; viscoelastic modeling of modified asphalt mastics [13]; and modeling rate-dependent nonlinear behaviors of rubber polymers [14]. The modeling and simulation of viscoelastic foods, for example, food gums [15], carrot root [16], fish burger baking [17], is another field of application of rheological fractional models.…”