The crack initiation and propagation in an aluminium alloy in a corrosive environment are complex because of the loading parameters and material properties, which may result in a sudden failure in real-time applications. This paper investigates the fracture toughness of aluminium alloy under varying environmental and corrosion conditions. The main objective of the work is to link the interdependencies of humidity and temperature for an AL6082-T651 alloy in a corrosive environment. This study investigates AL6082-T651alloy's fracture behaviour and mechanism through microstructure and fractographic studies. The results show that a non-corroded sample, at room conditions, provided more load-carrying capacity than a corroded sample. Additionally, an increase in temperature improves fracture toughness, while an increase in humidity results in a decrease in fracture toughness.