The properties of slow seismic activity migration have been revealed by the space-time analysis of the total earthquake energy (LgEsum). Our study of seismic activity covers the fragments of the Central Asian, Pacific and Alpine seismic belts: the Baikal rift system (BRS, Russia), the San Andreas fault zone (California, USA), the Christchurch fault (New Zealand), the North and East Anatolian faults (Turkey), the Philippine subduction zone, and the central fragment of the Mid-Atlantic oceanic ridge. The chains of LgEsum clusters mark the propagation of the maximum stresses front in the weaker crust areas, the zones of fault dynamic influence, and the regions of conjugated tectonic structures. The migration process is characterized by a periodicity, changes in direction, and similar modular values of the migration rates within a single fault segment (or a fault zone), which is probably related to the mechanical and rheological crust and upper mantle properties. The data analysis shows that a strong earthquake source may occur at a location wherein the front of seismic activity propagates with periodical changes in direction, and such a source can develop within a period that is multiple of the migration fluctuations, probably associated with the influence of external periodic factors. The main periods of migration fluctuations (2-4 years, and 9-13 years, in different ratios) are present in the seismic regimes of different seismic belts. The migration rate, as well as the propagation velocity of the maximum stresses front, directly depends on the velocity of movements between the plates in the region.