It is well‐known that the high cycle fatigue (HCF) strength of steel components is influenced by a lot of factors depending on both material, loading (including environment), specimen or component geometry (design), and manufacturing process. Based on a literature review of a lot of experimental data, a synthesis is proposed in this paper to discuss the effect of the structural and operational factors on the very high cycle fatigue (VHCF) characteristics of steels. HCF and VHCF regimes are distinguished in terms of failure mechanisms and S‐N curve shapes for high and low strength steels. Then, the effect of the microstructural and mechanical features on the VHCF resistance is debated as different parameters (microstructure, inclusion size type and depth, hydrogen, environment, maximum tensile strength, and residual stresses). Next, the influence of the loading conditions is addressed by taking into account both the frequency effect, the highly stressed volume, the loading type, and loading ratio. Finally, the influence of the testing techniques used in VHCF experiments is discussed.