We investigated the influence of different curing modes on the mechanical properties and wear behavior of dual-cure provisional resin-based composites (DCPRs). Three DCPRs and a self-curing bis-acryl provisional resin-based composite were used. Flexural strength (σF), elastic modulus (E), resilience (R), and fracture toughness (KIC) were measured. The specimens were fabricated with and without light irradiation, stored in distilled water at 37°C for 24 h, and subjected to 5,000 or 10,000 thermal cycles. For sliding impact wear testing, 12 specimens were prepared with and without light irradiation. The maximum facet depth and volume loss were determined using a noncontact profilometer. Some of the mechanical properties and wear behavior of DCPRs are affected by light irradiation. This study indicated that proper light irradiation is important in polymerization process of the DCPRs to enhance the wear resistance and some mechanical properties.