In this paper the biaxial Iosipescu test method has been used, employing specimens with a central precrack placed along the notch-root axis, to study the intralaminar failure properties of a unidirectional carbon/epoxy composite under mixed-mode (dominated by shear) loadings. A linear finite element analysis has been performed to determine the energy release rates and stress intensity factors for the central crack under various biaxial loading conditions. In addition, a series of simple and biaxial fracture experiments have been performed on the composite material. Numerical results indicate that the method is capable of generating a wide range of mixed-mode loading conditions at the crack tip for various loading angles and crack lengths. Using the numerical results, in conjunction with experimental data, the biaxial intralaminar failure process in the cracked Iosipescu specimens has been explained.