Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The main objectives of this paper are to assess the long-term and short-term production based on both reservoir parameters and completion parameters of shale gas reservoirs. The effects of the reservoir parameters (permeability and the initial reservoir pressure) and completion parameters (fracture geometry, stimulated reservoir volume, etc.) on the short-term and long-term production of shale gas reservoirs were investigated. The currently used approach relies mainly on the decline curve analysis or analogs from a similar shale play to forecast the gas production from shale gas reservoirs. Both these approaches are not satisfactory because they are calibrated on short production history and do not assess the impact of uncertainty in reservoir and well data. For the first time, this study integrates initial production analysis, probabilistic evaluation, and sensitivity analysis to develop a robust workflow that will help in designing a sustainable production from shale gas plays. The reservoir and completion parameters were collected from different available resources, and the probability distributions of gathered uncertain data were defined. Then analytical models were used to forecast the production. Two well evaluation results are presented in this paper. Based on the results, completion parameters affected the short-term and long-term production, while the reservoir parameters controlled the long-term production. Long-term well performance was mainly controlled by the fracture half-length and fracture height, whereas other completion and reservoir parameters have an insignificant effect. Stimulation treatment design defines the initial well performance, while well placement decision defines well long-term performance. The findings of this study would help in better understanding the production performance of shale gas reservoirs, maximizing production by selecting effective completion parameters and considering the governing reservoir parameters. Moreover, it would help in accomplishing more effective stimulation treatments and define the potentiality of the basin.
The main objectives of this paper are to assess the long-term and short-term production based on both reservoir parameters and completion parameters of shale gas reservoirs. The effects of the reservoir parameters (permeability and the initial reservoir pressure) and completion parameters (fracture geometry, stimulated reservoir volume, etc.) on the short-term and long-term production of shale gas reservoirs were investigated. The currently used approach relies mainly on the decline curve analysis or analogs from a similar shale play to forecast the gas production from shale gas reservoirs. Both these approaches are not satisfactory because they are calibrated on short production history and do not assess the impact of uncertainty in reservoir and well data. For the first time, this study integrates initial production analysis, probabilistic evaluation, and sensitivity analysis to develop a robust workflow that will help in designing a sustainable production from shale gas plays. The reservoir and completion parameters were collected from different available resources, and the probability distributions of gathered uncertain data were defined. Then analytical models were used to forecast the production. Two well evaluation results are presented in this paper. Based on the results, completion parameters affected the short-term and long-term production, while the reservoir parameters controlled the long-term production. Long-term well performance was mainly controlled by the fracture half-length and fracture height, whereas other completion and reservoir parameters have an insignificant effect. Stimulation treatment design defines the initial well performance, while well placement decision defines well long-term performance. The findings of this study would help in better understanding the production performance of shale gas reservoirs, maximizing production by selecting effective completion parameters and considering the governing reservoir parameters. Moreover, it would help in accomplishing more effective stimulation treatments and define the potentiality of the basin.
A conventional proppant pack may lose up to 99% of its conductivity due to gel damage, fines migration, multiphase flow, and non-Darcy flow. Therefore, the concept of pillar fracturing was developed to generate highly conductive paths for hydrocarbon to flow. The success of the pillar fracturing treatment depends on delivering the proppant as pillar stages with a good suspension. This suspension keeps the proppant within the stage, prevents the proppant from diffusing out of the stage, and improves the mechanical strength of the pillar during closure. Resin based chemistries were proposed in the literature for proppant pack consolidation. However, most of these resins are incompatible with the aqueous fracturing fluids. This warrants for special precautions to be undertaken during pumping of the treatment to avoid formation damage. This paper discusses a new chemistry that has been developed to substitute the porous proppant pack in the fracture with an isolated structure of propped pillars containing a network of open channels. Also, this paper further discusses the experimental procedures to test compatibility of the newly developed chemistry with crosslinked fracturing fluids, optimization to use the minimum concentrations, and making hard plugs of proppants pillars under pressure and temperature (up to 350°F). Furthermore, proppant suspension tests with and without pulsing were conducted at temperatures up to 300°F to evaluate the ability of creating the conductive channels. Finally, the mechanical strength of the created pillars was evaluated using triaxle load frames to confirm that the created pillar will resist the closure stress and keep the fracture open. Experimental results showed that embedded fluid after gelation can transport the proppant during the injection and closure time without settling, thus avoiding any issues with proppant screen outs. The compatibility test showed that different concentrations of the embedded gel fluid (from 20-50 vol %) was compatible with crosslinked fracturing fluid and fracturing fluid additives. Moreover, this new chemistry was able to suspend the proppants. Additionally, the consolidated proppant pack showed excellent mechanical strength enhancement with the developed fluid system where the proppant pillar can hold the fracture open at high closure stress. Also, it was interesting to notice that oxidizer breakers enhanced the mechanical strength of the developed proppant pillar. The created pillar was conductive and hydrocarbon flowed through it. The data obtained from this study showcases the development of a new fluid chemistry that can replace conventionally used techniques to transport proppant inside the fracture.
An optimist says the glass is half-full, a pessimist half-empty, whereas a good engineer says that the glass is twice as big as it needs to be. There has been much debate over the years about the relative functionality, application and even necessity of proppant in delivering effective hydraulic fractures. Often these debates have been directly linked to major changes in core frac applications, more recently in the dominant North American onshore unconventional market. However, the debates have all too often used broad or unclear brush strokes to describe shifting fracture requirements. Meanwhile, the developing oilfield in the rest of the world resides in more permeable areas of the resource triangle, great care must be taken to ensure that conventional lessons hard learned are not lost, but also that unconventional understanding develops. Over recent years there have been many debates and publications on the relative value of the use of proppant (and associated conductivity), although the true question was about appropriate fracture design in different rock/matrix qualities and environments. Certainly, the vast majority of fracturing engineers appreciate the difference between continuous proppant-pack conductivity and other techniques, such as infinite conductivity, pillar fracturing or duning designs. However, there is increasing evidence that conventional fracturing is suffering from populist attitudes, leading to ineffective fracturing. Additionally, and just as impactful, that unconventional fracturing continues to rely on the lessons learned and physics derived directly from our conventional experience but applying this in an entirely different environment. Primarily, the main concern is with the transfer of recent lessons learned and techniques utilised in one rock quality and environment, to an entirely different scenario, resulting in the misapplication, reduced IP30, poorer NPV or reduced long term EUR and IRR. Examples will be referenced where appropriate proppant selection and frac design can be the difference between success and failure. Fundamentally, we have not sufficiently developed our understanding of the role of proppant and conductivity, for application in unconventionals and thereby rely far too much on our previous conventional thinking. While at the same time we are exporting often inappropriate unconventional populist practice into very conventional environments, thereby potentially achieving the abhorrence of the worst of both worlds. This paper will describe and address scenarios where appropriate engineering selection, rather than popularity-based decision making, has resulted in a successful outcome. It will also attempt to ensure that we show the importance of studying your rock, in anticipation of engineering design, and that this should be a key consideration. The paper will also suggest that as an industry we urgently need to address our approach to consideration of conductivity, placement and importance and ensure that unconventional knowledge and learning progresses with a beneficial outcome for all.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.