Epigenetics refers to the study of heritable changes in gene expression that occur without a change in DNA sequence. Epigenetic mechanisms therefore include all transcriptional controls that determine how genes are expressed during development and differentiation, but also in individual cells responding to environmental stimuli. The purpose of this review is to examine the basic principles of epigenetic mechanisms and their contribution to human disorders with a particular focus on fragile X syndrome (FXS), the most common monogenic form of developmental cognitive impairment. FXS represents a prototype of the so-called repeat expansion disorders due to "dynamic" mutations, namely the expansion (known as "full mutation") of a CGG repeat in the 5 0 UTR of the FMR1 gene. This genetic anomaly is accompanied by epigenetic modifications (mainly DNA methylation and histone deacetylation), resulting in the inactivation of the FMR1 gene. The presence of an intact FMR1 coding sequence allowed pharmacological reactivation of gene transcription, particularly through the use of the DNA demethylating agent 5 0 -aza-2 0 -deoxycytydine and/or inhibitors of histone deacetylases. These treatments suggested that DNA methylation is dominant over histone acetylation in silencing the FMR1 gene. The importance of DNA methylation in repressing FMR1 transcription is confirmed by the existence of rare unaffected males carrying unmethylated full mutations. Finally, we address the potential use of epigenetic approaches to targeted treatment of other genetic conditions. Ă 2013 Wiley Periodicals, Inc.Key words: fragile X syndrome; epigenetics; transcriptional therapy INTRODUCTION When in 1942 Conrad H. Waddington coined the term "epigenetics," the exact nature of genes and their role in heredity and in transcriptional regulation was not known; he used it as a conceptual model of how genes might interact with their surroundings to produce a phenotype [Waddington, 1942]. The term is a portmanteau of the words epigenesis (differentiation of cells from their initial totipotent state in embryonic development) and genetics. Only in 2008 at a Cold Spring harbor meeting, consensus was reached on the definition of epigenetic trait, as "stably heritable phenotype resulting from changes in a chromosome without alterations in the DNA sequence" [Berger et al., 2009]. The greek prefix epi-refers to features that are "on top of" genetics, that is, all those stable but reversible changes to DNA, RNA and proteins that regulate gene expression and allow cells with the same DNA to do different things at different times.Broadly speaking, epigenetic mechanisms include all transcriptional controls that regulate gene expression, whether during development and differentiation or in mature cells responding to the environment. Epigenetic changes can be inherited (e.g., imprinting) and be relatively stable (e.g., chromosome X inactivation), but are often rapidly imposed or removed on a given locus according to cell needs. Four major layers of epigenetic controls have ...