N,N-dimethylformamide, HCON(CH), is a useful model compound for investigating the peptide bond photofragmentation dynamics. We report data from a comprehensive experimental and theoretical study into the photofragmentation dynamics of N,N-dimethylformamide in the gas phase at 193 nm. Through a combination of velocity-map imaging and hydrogen atom Rydberg tagging photofragment translational spectroscopy we have identified two primary fragmentation channels, namely, fission of the N-CO "peptide" bond and N-CH bond fission leading to the loss of CH. The possible fragmentation channels leading to the observed products are rationalised with recourse to CASPT2 calculations of the ground and first few excited-state potential energy curves along the relevant dissociation coordinates, and the results are compared with the data from previous experimental and theoretical studies on the same system.