The paper compares responses of 252 Cf-plasma desorption MS (PD-MS) and matrix-assisted laser desorption (MALDI) MS to identical samples. The two pairs of samples selected for the comparison were known from previous work to differ significantly in their high mass contents. MALDI-MS showed large differences in MM distributions within both pairs of samples. The PD-MS data showed a degree of similarity between one pair of samples (pyridine soluble/insoluble fractions of a coal tar pitch); for the second pair (a coal extract and its hydrocracked product), trends from the two MS techniques agreed closely. The MM range observed by PD-MS was somewhat narrower, extending to between 3000 and 5000 u. Significant differences within pairs of samples were observed by SEC and by UV-fluorescence spectroscopy, providing somewhat closer agreement with the MALDI spectra. The two MS instruments differ in two important respects: the ionization system (i.e., plasma vs laser desorption) and the maximum available ion extraction voltage: 30 kV for the MALDI-MS instrument and 15 kV for the PD-MS. The comparison of plasma vs laser desorption mass spectroscopy could not therefore take place at high ion extraction voltages. Work at up to 30 kV in the MALDI instrument indicated better sensitivity to highmass materials at higher ion extraction voltages. The qualitative similarity of results from the two MS techniques is nevertheless apparent; the range of MMs observed in PD-MS as well as in MALDI-MS were, furthermore, far larger than those reported by any MS technique, to date.