This book was written to provide the extrusion process engineer with a resource for assessing and fixing process problems associated with the use of single-screw extruders. The authors have drawn on their complementary backgrounds; both have worked with industrial extruder design, analysis, and fundamental research in the mechanism, operation, and troubleshooting of the single-screw extrusion process. The use of single-screw extruders in production processes has progressed significantly over the past several decades. As a result, the number of single-screw extruders in use has increased dramatically as has the diameter and length of the machine, especially for melt-fed extruders used in large resin production plants. In addition, resin manufacturers have developed many new resins for final products such as extruded sheet, film, pipe, fibers, coatings, and profiles. The extruder is still the process unit of choice for producing pellets in the production of polymer materials. Two types of extruders are generally used in polymer production: singlescrew extruders and twin-screw extruders. The material in this book will be confined to the analysis and troubleshooting of single-screw extruders. The rapid expansion of this part of the polymer industry has been accompanied by the need for many new extrusion engineers. Many of these engineers have not had formal training in the analysis of the extruder and screw design nor have they had extensive education in polymer materials, which would help in troubleshooting problems on production equipment.All single-screw extruders have several common characteristics, as shown in Figs. 1.1 and 1.2. The main sections of the extruder include the barrel, a screw that fits inside the barrel, a motor-drive system for rotating the screw, and a control system for the barrel heaters and motor speed. Many innovations on the construction of these components have been developed by machine suppliers over the years. A hopper is attached to the barrel at the entrance end of the screw and the resin is either gravity-fed (flood-fed) into the feed section of the screw or metered (starve-fed) through the hopper to the screw flights. The resin can be in either a solid particle form or molten. If the resin feedstock is in the solid form, typically pellets (or powders), the extruder screw must first convey the pellets away from the feed opening, melt the resin, and then pump and pressurize it for a down-