Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
In recent years, there has been a growing interest in synthetic data for several computer vision applications, such as automotive, detection and tracking, surveillance, medical image analysis and robotics. Early use of synthetic data was aimed at performing controlled experiments under the analysis by synthesis approach. Currently, synthetic data are mainly used for training computer vision models, especially deep learning ones, to address well-known issues of real data, such as manual annotation effort, data imbalance and bias, and privacy-related restrictions. In this work, we survey the use of synthetic training data focusing on applications related to video surveillance, whose relevance has rapidly increased in the past few years due to their connection to security: crowd counting, object and pedestrian detection and tracking, behaviour analysis, person re-identification and face recognition. Synthetic training data are even more interesting in this kind of application, to address further, specific issues arising, e.g., from typically unconstrained image or video acquisition conditions and cross-scene application scenarios. We categorise and discuss the existing methods for creating synthetic data, analyse the synthetic data sets proposed in the literature for each of the considered applications, and provide an overview of their effectiveness as training data. We finally discuss whether and to what extent the existing synthetic data sets mitigate the issues of real data, highlight existing open issues, and suggest future research directions in this field.
In recent years, there has been a growing interest in synthetic data for several computer vision applications, such as automotive, detection and tracking, surveillance, medical image analysis and robotics. Early use of synthetic data was aimed at performing controlled experiments under the analysis by synthesis approach. Currently, synthetic data are mainly used for training computer vision models, especially deep learning ones, to address well-known issues of real data, such as manual annotation effort, data imbalance and bias, and privacy-related restrictions. In this work, we survey the use of synthetic training data focusing on applications related to video surveillance, whose relevance has rapidly increased in the past few years due to their connection to security: crowd counting, object and pedestrian detection and tracking, behaviour analysis, person re-identification and face recognition. Synthetic training data are even more interesting in this kind of application, to address further, specific issues arising, e.g., from typically unconstrained image or video acquisition conditions and cross-scene application scenarios. We categorise and discuss the existing methods for creating synthetic data, analyse the synthetic data sets proposed in the literature for each of the considered applications, and provide an overview of their effectiveness as training data. We finally discuss whether and to what extent the existing synthetic data sets mitigate the issues of real data, highlight existing open issues, and suggest future research directions in this field.
Most crowd counting methods rely on integrating density maps for prediction, but they encounter performance degradation in the face of density variations. Existing methods primarily employ a multi-scale architecture to mitigate this issue. However, few approaches concurrently consider both scale and timing information. We propose a scale-divided architecture for video crowd counting. Initially, density maps of different Gaussian scales are employed to retain information at various scales, accommodating scale changes in images. Subsequently, we observe that the spatiotemporal network places greater emphasis on individual locations, prompting us to aggregate temporal information at a specific scale. This design enables the temporal model to acquire more spatial information and alleviate occlusion issues. Experimental results on various public datasets demonstrate the superior performance of our proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.